Pediatric Board Review - Congenital Heart Disease

Steven H. Todman, M.D.
Pediatric Cardiologist
Louisiana State University
Our Mission

• To discuss various types of congenital heart disease that are commonly tested on the Pediatric board exam.
The Presentation of Congenital Heart Disease is Age Dependent

• Important time periods
 ▫ Neonatal period: Birth to 1 month
 ▫ Infancy: 2 months to one year
 ▫ Children and adolescent
Transitional Circulation

- In the first week of life, the PFO and PDA closes.
- Subsequently, pulmonary vascular resistance drops to normal levels by 2 months.
Cyanosis

- Hyperoxia test is the gold standard to evaluate cyanosis.
 - Obtain ABG to measure PO2
 - Place in 100% oxygen for >10 minutes
 - Measure the PO2
 - If PO2 <50 or unchanged, cardiac etiology is likely
 - If PO2 is 50-150, equivocal for cardiac or pulmonary etiology
 - PO2>150, cardiac etiology is unlikely.
Neonatal Cardiogenic Shock

• Decrease in systemic blood flow with PDA closure.

• Symptoms
 ▫ Poor feeding
 ▫ Lethargy or irritability
 ▫ Oliguria
 ▫ Cool extremities
 ▫ Poor perfusion and peripheral pulses (x4)
Pulmonary Stenosis

• **Pathology:**
 ▫ Pulmonary stenosis may be valvular, subvalvular, or supravalvular.

• **Clinical Manifestations:**
 ▫ Mild-moderate: asymptomatic
 ▫ Murmur: systolic ejection murmur at ULSB, radiates to back. +/- click, +/- thrill
 ▫ ECG is normal
 ▫ CXR is normal
Pulmonary Stenosis

- **Clinical Manifestations:**
 - **Severe/ductal dependent:**
 - Cyanosis
 - **Moderate to severe:**
 - ECG demonstrates RAD and RVH
 - CXR is normal, or can show diminished vascular markings.
Pulmonary Stenosis

• **Treatment:**
 - **Mild-moderate:**
 • Observation
 - **Severe**
 • Balloon valvuloplasty
 - **Ductal dependent**
 • Prostaglandins
Pulmonary Stenosis

• Natural History
 ▫ Mild pulmonary stenosis
 • Non-progressive
 ▫ Moderate to severe pulmonary stenosis
 • Progressive

• Associations:
 ▫ Noonan’s syndrome
Aortic Stenosis

- **Pathology:**
 - May be valvar, subvalvar, or supravalvar
- **Clinical Manifestations**
 - Murmur: Systolic murmur at URSB, or ULSB with radiation to the neck.
 - +/- click
 - +/- thrill
Aortic Stenosis

• Clinical Manifestations
 ▫ Moderate to severe aortic stenosis can be associated with chest pain, syncope, or sudden death.
 ▫ Neonatal presentation of severe aortic stenosis may be heart failure.
Aortic Stenosis

- **EKG:**
 - Mild: normal
 - Moderate to severe: LVH +/- strain
- **CXR:**
 - Usually normal
- **Natural History:**
 - Progressive
Aortic Stenosis

• **Treatment:**
 - Mild to moderate: observation
 - Severe – Neonatal: PGE and balloon valvuloplasty
 - Severe – Child/Adolescent: balloon valvuloplasty

• **Associations:**
 - Bicuspid aortic valve
 - Coarctation of the aorta
 - Williams’ syndrome (supravalvar AS, PS)
Coarctation of the Aorta

- **Pathology:**
 - Almost always juxtaductal
- **Clinical Manifestations:**
 - First week of life: Poor feeding, respiratory distress, shock, acidemia, weak lower extremity pulses
 - May have no murmur, or non-specific systolic ejection murmur.
Coarctation of the Aorta

• **Treatment:**
 - Medical – PGE1 infusion first weeks of life.
 - Surgical – Repair (end-to-end anastomosis)

• **Natural History:**
 - Re-coarctation

• **Associations:**
 - Bicuspid aortic valve
 - Turner’s syndrome
Interrupted Aortic Arch

- **Pathology:**
 - Severe form of coarctation where a portion of the aortic arch is atretic, or absent.
Interrupted Aortic Arch

- **Pathology:**
 - Severe form of coarctation where a portion of the aortic arch is atretic, or absent.
Interrupted Aortic Arch

- **Treatment**
 - PGE1
 - Surgical repair

- **Associations**
 - Type B interrupted aortic arch and DiGeorge syndrome
d-Transposition of the Great Arteries

- **Pathology:**
 - Parallel circulation
 - Mixing is required (ASD, PDA)

- **Clinical Manifestations**
 - Cyanosis in a large newborn
 - Single S2
 - Usually no murmur
d-Transposition of the Great Vessels

- **EKG:**
 - Normal
- **CXR:**
 - Egg on a string
- **Treatment:**
 - Prostaglandins
 - +/- Balloon atrial septostomy
 - Surgery
d-Transposition of the Great Arteries

• **Associations:**
 ▫ Most common cyanotic lesion to present in the newborn period
 ▫ Big Fat blue baby
Clinical Case

- 6 month old male presents to your clinic for a well child checkup. Pulse oxymetry measures 88% in the right upper extremity. Pulses are equal in the upper and lower extremities, and the lungs are clear to auscultation.
- Cardiac auscultation reveals a normal S1 and S2, and a loud, harsh III/VI systolic ejection murmur at the upper left sternal border.
Clinical Case

• Differential diagnosis?
Vignette #3
Vignette #3
Clinical Case

- You leave the room to check on another patient and return to find that the patient is crying unconsolably, and is visibly cyanotic. No murmur is heard.
 - What is going on, and what is the next step?
Hyercyanotic “TET” Spell
Hypercyanotic “TET” Spell

- (1) Comfort the child
- (2) Oxygen (preferably BBO2)
- (3) Knee to chest position
 - Raises systemic vascular resistance.
- (4) Morphine sulfate SQ (0.1mg/kg)
 - Slows respiration, and may also relax the infundibulum
- (5) Phenylephrine 2 to 5 mg/kg/min
 - Increases SVR
Tetralogy of Fallot

• Pathology:
 ▫ (1) RVOT obstruction
 ▫ (2) RVH
 ▫ (3) VSD
 ▫ (4) Overriding aorta

• Clinical Manifestations
 ▫ Degree of RVOT obstruction determines oxygen saturation
 ▫ Murmur: Systolic ejection murmur at the mid to upper left sternal border
Tetralogy of Fallot

• EKG:
 ▫ RVH and RAD
• CXR:
 ▫ Boot shaped heart (upturned cardiac apex), decreased lung vasculature.
• Natural History:
 ▫ Hypercyanotic “Tet” Spells
• Associations:
 ▫ Most common cyanotic lesion in general
 ▫ DiGeorge syndrome
Post-op
Bundle Branch Block
Clinical Case

- A 10 day-old boy presents to the emergency room with increased irritability, poor feeding and ashen discoloration of the skin for the past 2-3 days. He was born full term via normal vaginal delivery with no perinatal complications.
- He was well, and asymptomatic for the first week of life. There are no known sick contacts.
Clinical Case

- Physical Exam - child in moderate to severe respiratory distress with cyanosis and gray skin tone. Capillary refill is more than 3 seconds, with weak pulses in all extremities. Blood pressure was not obtainable. Oxygen saturation was 70% on room air. Mild hepatomegaly was noted, and the cardiac apex appears displaced to the right. Auscultation revealed a single second heart sound with no significant murmurs.
Clinical Case

• Your assessment?
Clinical Case

• Presentation is classic for cardiogenic shock
 ▫ Abnormal apical impulse
 ▫ Single second heart sound
 ▫ Significant oxygen desaturation beyond what is typically seen with sepsis should prompt investigation into cardiac etiologies.
Diagnosis and management

- Hypoplastic left heart
- Prostaglandins
- Correction of metabolic acidosis
- Avoid excessive oxygen
- Maintain normal electrolytes
 - Calcium
Hypoplastic Left heart syndrome

• Pathology:
 ▫ Hypoplasia of LV, and atresia or critical stenosis of the aortic and/or mitral valves, and hypoplasia of the ascending aorta and aortic arch.
Hypoplastic Left Heart

- Clinical Manifestations
 - Cardiogenic shock
 - Tachycardia, dyspnea, weak peripheral pulses
 - Generally greyish-blue skin color with poor perfusion
 - Murmur
 - May have no murmur
 - S2 is single
 - PMI may be displaced to the right
Hypoplastic Left Heart

- **EKG:**
 - RVH

- **CXR:**
 - Usually normal

- **Natural History:**
 - Critically ill (shock) during first week of life with PDA closure

- **Treatment:**
 - Prostaglandins
 - Surgery
 - Norwood, Bidirectional Glenn/Hemi-fontan, Fontan
Tricuspid Atresia

Pathology:
- Absent tricuspid valve, with hypoplastic right ventricle.
- ASD with right to left shunting is necessary.
Tricuspid Atresia

- Clinical Manifestations
 - Presentation varies, however generally presents with cyanosis
Tricuspid Atresia

• **EKG:**
 ▫ Superior QRS axis (0 to -90 degrees), LVH

• **Treatment:**
 ▫ Prostaglandins if severe cyanosis
 ▫ Surgery
 • Ultimately requires Fontan

• **Associations:**
 ▫ Cyanosis with superior QRS/LVH = TA
Ebstein’s Anomaly

- **Pathology:**
 - Apical displacement of the tricuspid valve, so that a portion of the RV is incorporated into the RA (atrialized).
 - A PFO/ASD is present in all patients.
Ebstein’s Anomaly

• Clinical Manifestations
 ▫ Cyanosis often present in the first few days of life.
 ▫ Murmur
 • Triple or quadruple rhythm with widely split S2, and S3 and S4.
Ebstein’s Anomaly

- **EKG:**
 - RBBB, RAE, WPW pattern, first degree heart block

- **CXR:**
 - Wall to wall heart

- **Treatment:**
 - Eventually requires surgery

- **Associations:**
 - WPW
Truncus Arteriosus

- **Pathology:**
 - A single arterial trunk with a truncal valve exits the heart and gives rise to the pulmonary, systemic, and coronary circulations.
 - A large VSD is present below the truncal valve.
Truncus Arteriosus

• Clinical Manifestations
 ▫ Cyanosis can be seen after birth.
 ▫ CHF develops weeks after birth after PVR decreases.
 ▫ Bounding peripheral pulses

• Murmur
 • Single S2
 • May have an early diastolic murmur from truncal valve insufficiency
Truncus Arteriosus

- **EKG:**
 - Biventricular hypertrophy

- **CXR:**
 - Cardiomegaly, with increased vascularity

- **Treatment:**
 - Surgery

- **Associations:**
 - DiGeorge syndrome
Total Anomalous Pulmonary Venous Return (TAPVR)

- **Pathology (Supracardiac):**
 - Most common type
 - Common pulmonary venous sinus drains into the right SVC through the left vertical vein and the left innominate vein.
Total Anomalous Pulmonary Venous Return (TAPVR)

- Clinical Manifestations (unobstructed pulmonary veins)
 - Mild cyanosis from birth, CHF, and growth restriction.
- Murmur
 - Widely split S2, and 2-3/6 systolic ejection murmur at ULSB
 - Mid-diastolic rumble at LLSB (secondary to flow through the tricuspid valve)
Total Anomalous Pulmonary Venous Return (TAPVR)

- **EKG:**
 - rSR’ pattern in V1

- **CXR:**
 - Cardiomegaly, with increased vascularity.
 - Snowman sign generally after 4 months.

- **Treatment:**
 - Surgery
Total Anomalous Pulmonary Venous Return (TAPVR)

- **Clinical Manifestations (obstructed pulmonary veins)**
 - Marked cyanosis and respiratory distress in the neonatal period with FTT

- **Murmur**
 - May be absent, or faint systolic ejection murmur at the ULSB

- **CXR**
 - Lung fields show pulmonary edema (may be confused with pneumonia or hyaline membrane disease)
Left to Right Shunt Lesions

- ASD
- VSD
- PDA
- Endocardial Cushion Defect (AV canal)
Atrial Septal Defect

- **Pathology:**
 - Most common
 - Secundum
 - Sinus venosus defects are associated with PAPVR.
Atrial Septal Defect

- Clinical Manifestations
 - Pediatric patients are typically asymptomatic
 - Generally, no CHF
 - Murmurs
 - Widely split and fixed S2 and a systolic ejection murmur at the ULSB
 - Mid-diastolic rumble from relative tricuspid stenosis at the LLSB
Atrial Septal Defect

- **EKG:**
 - rSR’ pattern in V1

- **CXR:**
 - Cardiomegaly with right heart enlargement
 - Prominent pulmonary artery and increased lung markings
Atrial Septal Defect

- **Natural History:**
 - Small defects tend to close spontaneously prior to 4 years of life.
 - Larger defects rarely close spontaneously
- **Treatment:**
 - Interventional closure in cath lab ~4 years of age
 - Surgical closure if not amenable to device closure
- **Association:**
 - Holt-Oram
Ventricular Septal Defect

- Pathology (small):
 - Holosystolic murmur at the LLSB
Ventricular Septal Defect

- Clinical Manifestations (small VSD)
 - Pediatric patients are typically asymptomatic with normal growth and development
- EKG:
 - normal
- CXR:
 - normal
Ventricular Septal Defect

- Pathology (moderate to large VSD):
 - Murmur
 - Holosystolic murmur at LLSB
 - +/- Apical diastolic murmur
Ventricular Septal Defect

- Clinical Manifestations (moderate to large VSD)
 - Poor weight gain, decreased exercise tolerance, frequent lower respiratory infections, and CHF
- EKG:
 - LVH, or biventricular hypertrophy
- CXR:
 - Cardiomegaly with increased pulmonary vascularity
Ventricular Septal Defect

- Treatment
 - Anticongestive medications
 - Diuretics first line
 - Surgical repair 4-6 months of age.
Patent Ductus Arteriosus

- Pathology (small):
 - Continuous murmur at the LUSB.
Patent Ductus Arteriosus

• Clinical Manifestations (small PDA)
 ▫ Pediatric patients are typically asymptomatic with normal growth and development

• EKG:
 ▫ normal

• CXR:
 ▫ normal
Patent Ductus Arteriosus

- Pathology (moderate to large PDA):
 - Murmur
 - Continuous murmur at LUSB
 - Bounding peripheral pulses with wide pulse pressure
Patent Ductus Arteriosus

- Clinical Manifestations (moderate to large PDA)
 - Poor weight gain, decreased exercise tolerance, frequent lower respiratory infections, and CHF
- EKG:
 - LVH, or biventricular hypertrophy
- CXR:
 - Cardiomegaly with increased pulmonary vascularity
Patent Ductus Arteriosus

• **Treatment**
 - Indomethacin if in the immediate newborn period, particularly with pre-term infants
 - Device closure in the cardiac catheterization laboratory
 - Surgical ligation
Endocardial Cushion Defect

• Pathology: Complete AV canal most common form
 ▫ Ostium Primum ASD, VSD in the inlet ventricular septum, and cleft mitral valve
 ▫ Results in interatrial and interventricular shunts, and AV valve regurgitation
Endocardial Cushion Defect

• **Clinical Manifestations**
 - **Patients typically have signs of CHF.**
 - **Murmur**
 - Systolic ejection murmur at upper left sternal border (relative pulmonary stenosis)
 - Apical holosystolic murmur (mitral regurgitation)
 - May also have a gallop rhythm and hepatomegaly if CHF is present.
Endocardial Cushion Defect

- **EKG:**
 - Superior QRS axis
 - First degree heart block
 - RVH

- **CXR:**
 - Cardiomegaly with increased lung markings
Endocardial Cushion Defect

• Natural History:
 ▫ Heart failure 1 to 2 months after birth.
 ▫ Recurrent lower respiratory infections are common.

• Treatment:
 ▫ Anticongestive medications – Lasix
 ▫ Surgical repair at approximately 4 months of age.

• Association:
 ▫ Down Syndrome
“Mr. Osborne, may I be excused? My brain is full.”